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Abstract 
This project is focused on developing physical-statistical methods for seasonal climate forecasting. 
Our intended output is a probability distribution for the forecast quantity of interest, so we make use 
of a contemporary statistical technology known as Bayesian hierarchical modelling (Berliner, 
2003). The essence of these methods is that, where possible, we use physically-based models for the 
processes concerned blended with empirical models where this is not possible. The outputs are 
probability distributions which we can use to summarise quantities of interest, particularly physical 
model parameters and forecasts of climate outputs (rainfall, temperature etc). 
 
This project is a small method development activity, with implementation to follow in Project 3.2.7. 
Given this, in consultation with CSIRO Climate we decided to focus this project on forecasting 
climate processes strongly influenced by the El Niño-Southern Oscillation (ENSO). The principal 
reason for this is that ENSO is quite well understood, with an established literature on simplified 
physical models. We note in particular the literature on delayed oscillators (Suarez and Schopf, 
1988) and recharge oscillators (Burgers et al., 2005).  
 
We consider two modes of forecasting: on-line (akin to data assimilation) and off-line (repeated use 
of a fixed forecast rule). Conventional Bayesian model-fitting methodologies tend to focus on 
Markov chain Monte Carlo (Smith and Roberts, 1993). This is an iterative technique, so is quite 
suitable for off-line problems. However, this may not be the case for streaming data and a 
methodology known as sequential Monte Carlo (Doucet et al., 2001) has been developed for this 
situation. A common approach is to use a weighted sample (so-called “particles”) from the state 
space of interest, which are resampled at each step of the filter to ensure only the fittest survive. 
These particle filters generalise readily to nonlinear models and/or non-Gaussian error structures. 
 
A key concern in model development is proper accounting for uncertainty, and integration of 
uncertainty into any forecasts that we derive. This is a strength of the Bayesian approach since it is 
based on probabilistic representation of knowledge acquisition. We may integrate prior uncertainty 
(parameter values and boundary conditions), representational uncertainty (recognising that no 
physical model is entirely correct) and measurement error in particular. 
 
Summary of Results 
The project objective was: 

• Develop and test a prototype physical-statistical model linking climate variables and 
physical drivers 

 
The results obtained are discussed below against each of the project’s three milestones: 
o Review & document relevant literature with modelling options. 
A key choice to be made has been which physical processes and climate outputs to focus on. 
Through consultation with CSIRO Climate we decided to focus on ENSO as the key driving 
process, and selected the recharge oscillator model of Burgers et al. (2005) for the physical 
component. This represents the most contemporary work on simplified models for ENSO, but we 
have also considered the delayed oscillator model of Suarez and Schopf (1988) in particular. This 
latter model incorporates local nonlinear effects, which is an extension we may consider if time 
permits in project 3.2.7. In terms of climate outputs, we will focus on rainfall and temperature 
(maximum, minimum, range) in order of priority. 

In practical terms, the results obtained under this milestone provide a suitable physical model to 
build a forecasting system around. 

o Develop prototype physical-statistical model. 
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A key task under this milestone was to develop a suitable model framework to integrate the physical 
model component with the empirical components. The empirical components are needed to capture 
measurement error and to incorporate climate forcing that is not captured via a physical model. This 
was accomplished, and is described in the next section in more detail. 

We have also extended the Burgers et al. model to incorporate seasonal forcing and representational 
error, and successfully tested our implementation for computational efficiency. We have compiled 
all the data needed to fit this model to observed data. The physical-statistical model also 
incorporates the possibility of other driving processes, which are captured via empirical 
relationships. 

In practical terms, the results obtained under this objective allowed us to develop a physical-
statistical probability model with an extended version of the Burgers et al. (2005) model. 

o Benchmark performance of most promising model-fitting algorithm. 
To set up Project 3.2.7 we have also explored and benchmarked1 appropriate algorithms to 
implement the model. We have examined two scenarios: off-line data processing and on-line, 
streaming data. The latter case provides a mechanism to dynamically update the model as new data 
became available. In both cases we find that methods based on Markov chain Monte Carlo 
simulation are viable. For streaming data a further choice is the use of particle filters, which may be 
thought of as a general approach to data assimilation. Particle filters will likely be the only viable 
option if it is necessary to incorporate nonlinear/non-Gaussian features into the model. 
In practical terms, the results obtained under this objective identified leading candidates for 
algorithms to implement the physical-statistical model that has been developed. 

Summary of Methods 
The Burgers et al. (2005) model is two-dimensional in terms of sea surface temperature anomaly 
and thermocline depth, and a typical realisation is shown in Figure 1 below. We see that following 
an initial shock the system settles down to a stable limit point. 

                                                 
1 We developed benchmark algorithms via a review of the literature on computation in this field according two criteria: 
(i) Effectiveness of automatic implementation and (ii) Anticipated run time.  
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Figure 1 Realisation of the Burgers et al. model with starting value (-0.5, 0.3). 

 
Nature tends to be far more complex, so we have incorporated periodic forcing and representation 
error into the model; a typical realisation is shown in Figure 2 below. We see now that there is no 
simple limit point. This physical model has been embedded in a physical-statistical model, which is 
depicted as a graphical model (Lauritzen and Spiegelhalter, 1988) in Figure 3. 
This depicts the ENSO process (P) having parameters ( PΨ ) and boundary conditions ( PB ); 
observations on ENSO are shown as Y, and statistical parameters arising such as measurement error 
as Yθ . We then have links to the climate outputs of interest (C1, …, Cm), which may be further 
influenced by a set of climate predictors (Ai) in each case. These are empirical relationships, so 
giving rise to a set of statistical parameters (θi) in each case. Using this graph it is possible to write 
down a probability model for all the components to use for forecasting, and a detailed description of 
the methods are described by Campbell (2007-attached). 
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Figure 2 The Burgers et al. model with periodic forcing and stochastic representation error. 

 
The final method required is for model fitting. Effective model-fitting, or calibration as it is 
sometimes known, is crucial to developing a skilful forecast model. In the Bayesian framework this 
amounts to characterising the probability distributions of uncertain quantities of interest, such as 
predictive distributions for forecast quantities. Expressions for these can be written down but rarely 
evaluated analytically, so numerical methods are required. 
 
Simulation methods are the dominant approach to solving such problems, but we first need to 
consider more deeply how a forecast scheme might be applied in practice. We distinguish two 
cases: 
1. The model is calibrated and validated, then applied essentially as-is as new data arrive. This 

approach is termed off-line processing. 

2. The model is updated as new data arrive, so this approach is termed on-line processing. In this 
context the data are said to be streaming. 

The most widely-used approach to Bayesian computation is an iterative method known as Markov 
chain Monte Carlo (MCMC). This can be very computationally intensive by the standards of 
conventional statistical methods. An alternative approach, which is commonly used with streaming 
data, is known as particle filtering. The fundamental idea of the particle filter is that whilst a 
particular probability distribution may be difficult to sample from, it is typically easy to evaluate 
values that are proportional to the probability density. We may then draw a sample of so-called 
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particles from essentially any distribution, then use values of the density function we are interested 
in to resample these particles. After resampling the particles follow the distribution of interest. 
Details of these approaches are provided by Campbell (2005, 2007). 
 

 
 

 

 

Figure 3 Graphical model displaying inter-connections between the ENSO process (P), observations on ENSO 
(Y) and various climate outputs (C1, . . ., Cm). 

 
Conclusions 
Project 1.5.5 had been focused on method development, with key achievements including a 
framework for the physical-statistical forecast model, algorithms to implement it and an extension 
of the physical model to be used. This model will next be used to develop and test forecasts of 
rainfall and temperature in the southeast Murray-Darling Basin. The objective will be to provide a 
proof-of-concept application via Project 3.2.7, to be concluded by December 30, 2007. 
 
Acknowledgements: This project was partly funded by the South East Australian Climate Initiative, 
with additional support provided by CSIRO for statistical method development. The project leader 
is grateful for the input of Dr Bryson Bates in helping to frame the scope of this work. 
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Project Milestone Reporting Table 

To be completed prior to commencing the project Completed at each Milestone date 
Milestone 
description1 

(brief) 
(up to 33% of 
project activity) 

Performance 
indicators2 

(1- 3 dot points) 

Completion 
date3 
xx/xx/xxxx 

Budget4 
for 
Milestone 
($) 

Progress5 
(1- 3 dot points) 

Recommended 
changes to 
workplan6 
(1- 3 dot points) 

1. Complete & 
document 
relevant 
literature with 
modelling 
options.  

- Document 
climate variables 
of interest. 
- Document 
relevant physical 
processes and 
candidate 
conceptual 
models. 
- Select a 
conceptual model 
to progress. 

30/05/2006 15k • Initial 
consultation 
suggested a 
focus on ENSO. 

• Review of 
literature on 
conceptual 
models for 
ENSO is 
complete. 

• Have selected a 
conceptual 
model to 
progress. 

Milestone 
Complete 

2. Develop 
proto-type 
physical-
statistical 
model. 

- Establish and 
document 
hierarchical 
model. 

30/09/2006 15k • A model 
framework has 
been developed. 

• A draft 
technical report 
is in progress is 
about to be 
submitted for 
peer review. 

Milestone 
Complete 

3. Benchmark 
performance of 
most promising 
model-fitting 
algorithm. 

- Select test data. 
- Identify 
candidate 
algorithms. 
- Benchmark 
most promising 
algorithm. 
- Document as a 
report. 

31/12/2006 20k • We have 
selected 
algorithms 
appropriate for 
streaming and 
non-streaming 
data and 
benchmarked 
them for 
computational 
efficiency. 

• Draft technical 
report is to be 
submitted for 
peer review 
imminently. 

Milestone 
Complete. 

 
Project Outputs: Methodology technical report and software to test model-fitting algorithms. 
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Appendix: Data Compiled for this Project 
 
Data sources for the model fitting and ENSO forecasting study of Burgers et al. (2005). 

Model Variable Data Set 
ET  Observed NCEP Niño3 index 

τ  Average of the FSU objective pseudo wind 
stress 

Thermocline depth BMRC data set of the 20° isotherm depth: 
 

Wh - Average over 130°E-170°E 

Eh - Average over 150°W-90°W 
   h- Average over 130°E-80°W 

 




